티스토리 뷰

RapiClear®

Maximize Signal-to-Noise Ratio

 

RapiClear 1.47  [RC147001, RC147002]                

 

[One-Step Tissue Clearing Reagent/RapiClear®] RapiClear 1.47 [RC147001, RC147002]_Sunjin Lab - 코아사이언스

  RapiClear 1.47 Cat.# RC147001 / Size: 10mL Cat.# RC147002 ...

blog.naver.com

 

 RapiClear 1.49  [RC149001, RC149002]  

 

[One-Step Tissue Clearing Reagent/RapiClear®] RapiClear 1.49 [RC149001, RC149002]_Sunjin Lab - 코아사이언스

  RapiClear 1.49 Cat.# RC149001 / Size: 10mL Cat.# RC149002 ...

blog.naver.com

 

RapiClear 1.52  [RC152001, RC152002]          

 

[One-Step Tissue Clearing Reagent/RapiClear®] RapiClear 1.52 [RC152001, RC152002]_Sunjin Lab - 코아사이언스

RapiClear 1.52 Cat.# RC152001 / Size: 10mL Cat.# RC152002 / Size: 100mL ...

blog.naver.com

      

RapiClear 1.55 [RC155001, RC155002]

 

[One-Step Tissue Clearing Reagent/RapiClear®] RapiClear 1.55 [RC155001, RC155002]_Sunjin Lab - 코아사이언스

RapiClear 1.55 Cat.# RC155001 / Size: 10mL Cat.# RC155002 / Size: 100...

blog.naver.com

 

RapiClear CS solution  [RCCS001, RCCS002]        

 

[One-Step Tissue Clearing Reagent/RapiClear®] RapiClear CS solution [RCCS001, RCCS002]_Sunjin Lab - 코아사이언스

  RapiClear CS solution Cat.# RCCS001 / Size: 20mL Cat.# RCCS002...

blog.naver.com

 

RapiClear CS gel [RCCS004, RCCS005]

 

[One-Step Tissue Clearing Reagent/RapiClear®] RapiClear CS gel [RCCS004, RCCS005]_Sunjin Lab - 코아사이언스

  RapiClear CS gel Cat.# RCCS004 / Size: 20mL Cat.# RCCS005 ...

blog.naver.com

 

Information 

RapiClear® is a water-soluble clearing reagent that can make biological tissues transparent swiftly and easily. It can vastly enhance the visualization depth of specimen labelled with fluorescent dyes to micrometers, even millimeters. RapiClear® can be widely applied in cell morphology observation of tissues from animal, plant, and insect, as well as in portraying biomaterial scaffolds such as collagen and cellulose. The application of RapiClear® makes construction of detailed 3D images possible.

 

RapiClear selection guide 

Tissue Clearing 

 

References 

Human

1.Stewart BJ et al. Spatiotemporal immune zonation of the human kidney. Science (2019). https://doi.org/10.1126/science.aat5031

2.Yang H et al. Microvascular Network and Its Endothelial Cells in the Human Iris. Curr Eye Res (2017). https://doi.org/10.1080/02713683.2017.1379544

Mouse

1.Mondor I et al. Lymphatic Endothelial Cells Are Essential Components of the Subcapsular Sinus Macrophage Niche. Immunity (2019). http://doi.org/10.1016/j.immuni.2019.04.002

2.Grundy L et al. Translating peripheral bladder afferent mechanosensitivity to neuronal activation within the lumbosacral spinal cord of mice. Pain (2019). http://doi.org/10.1097/j.pain.0000000000001453

3.Chakarov S et al. Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science (2019). https://doi.org/10.1126/science.aau0964

4.Cabeza-Cabrerizo M et al. Tissue clonality of dendritic cell subsets and emergency DCpoiesis revealed by multicolor fate mapping of DC progenitors. Sci Immunol (2019). https://doi.org/10.1126/sciimmunol.aaw1941

5.Grundy L et al. Chronic linaclotide treatment reduces colitis-induced neuroplasticity and reverses persistent bladder dysfunction. JCI Insight (2018). https://doi.org/10.1172/jci.insight.121841

6.Atlan G et al. The Claustrum Supports Resilience to Distraction. Curr Biol (2018). https://doi.org/10.1016/j.cub.2018.06.068

7.Baranska A et al. Unveiling skin macrophage dynamics explains both tattoo persistence and strenuous removal. J Exp Med (2018). https://doi.org/10.1084/jem.20171608

8.Mondor I et al. Clonal Proliferation and Stochastic Pruning Orchestrate Lymph Node Vasculature Remodeling. Immunity (2016). http://dx.doi.org/10.1016/j.immuni.2016.09.017

9.Seiradake E et al. FLRT structure: balancing repulsion and cell adhesion in cortical and vascular development. Neuron (2014). http://dx.doi.org/10.1016/j.neuron.2014.10.008

Arthropods

1.Guo H et al. Disruptive mutations in TANC2 define a neurodevelopmental syndrome associated with psychiatric disorders. Nat Commun (2019). http://dx.doi.org/10.1038/s41467-019-12435-8

2.Kurtz P et al. Drosophila p53 directs non-apoptotic programs in postmitotic tissue. Mol Biol Cell (2019).https://doi.org/10.1091/mbc.E18-12-0791

3.Benavides LR et al. Phylogeny, evolution and systematic revision of the mite harvestman family Neogoveidae (Opiliones Cyphophthalmi). Invertebrate Systematics (2019). https://doi.org/10.1071/IS18018

4.Göpel T et al. Morphological description, character conceptualization and the reconstruction of ancestral states exemplified by the evolution of arthropod hearts. PLoS One (2018). https://doi.org/10.1371/journal.pone.0201702

5.Marcogliese PC et al. IRF2BPL Is Associated with Neurological Phenotypes. Am J Hum Genet (2018). https://doi.org/10.1016/j.ajhg.2018.07.006

6.Lin G et al. Phospholipase PLA2G6, a Parkinsonism-Associated Gene, Affects Vps26 and Vps35, Retromer Function, and Ceramide Levels, Similar to α-Synuclein Gain. Cell Metab (2018). https://doi.org/10.1016/j.cmet.2018.05.019

7.Li-Kroeger D et al. An expanded toolkit for gene tagging based on MiMIC and scarless CRISPR tagging in Drosophila. eLife (2018). https://doi.org/10.7554/eLife.38709.001

8.Liu N et al. Functional variants in TBX2 are associated with a syndromic cardiovascular and skeletal developmental disorder. Hum Mol Genet (2018). https://doi.org/10.1093/hmg/ddy146

9.Lee PT et al. A gene-specific T2A-GAL4 library for Drosophila. eLife (2018). https://doi.org/10.7554/eLife.35574

10.Lee PT et al. A kinase-dependent feedforward loop affects CREBB stability and long term memory formation. eLife (2018). https://doi.org/10.7554/eLife.33007.001

11.Myers L et al. The Drosophila Ret gene functions in the stomatogastric nervous system with the Maverick TGFβ ligand and the Gfrl co-receptor. Development. (2018). http://dx.doi.org/10.1242/dev.157446

12.Frank DD et al. Early Integration of Temperature and Humidity Stimuli in the Drosophila Brain. Curr Biol (2017). http://dx.doi.org/10.1016/j.cub.2017.06.077

13.Enjin A et al. Humidity Sensing in Drosophila. Curr Biol (2017). http://dx.doi.org/10.1016/j.cub.2016.03.049

14.Osterfield M et al. Diversity of epithelial morphogenesis during eggshell formation in drosophilids. Development (2015). http://dev.biologists.org/lookup/doi/10.1242/dev.119404

15.Nagarkar-Jaiswal S et al. A library of MiMICs allows tagging of genes and reversible spatial and temporal knockdown of proteins in Drosophila. eLife (2015). http://dx.doi.org/10.7554/eLife.05338

Porcine

1.Yang H et al. Quantitative study of the microvasculature and its endothelial cells in the porcine iris. Exp Eye Res (2015). http://dx.doi.org/10.1016/j.exer.2015.02.006

2.Yang H et al. Intracellular cytoskeleton and junction proteins of endothelial cells in the porcine iris microvasculature. Exp Eye Res (2015). http://dx.doi.org/10.1016/j.exer.2015.08.025

Zebrafish

1.Steventon B et al. Species-specific contribution of volumetric growth and tissue convergence to posterior body elongation in vertebrates. Development (2016). http://dev.biologists.org/lookup/doi/10.1242/dev.126375

 

FOR RESEARCH USE ONLY. NOT FOR DIAGNOSTIC USE.

코아사이언스 coresciences Sunjin Lab Co. Taiwan 대만 한국 대리점 세포 형광염색 관찰 증진 개선 세포형태 관찰 생물학적 시료 검체 선명 조직 내 세포 형태 뚜렷하게 명확 관찰 개선 포유동물 식물 곤충 biomaterial scaffold 콜라겐 키토산 셀룰로오스 조직 투명화