티스토리 뷰

안녕하세요!

 

세계 최고 수준의 품질관리와 치밀한 분석 자료를 제공하는 Primary Reference Standard 전문 제조사인 독일 PhytoLab 공식 수입/공급 업체 코아사이언스 입니다.

 

제품을 생산할 때마다 최신의 분석장비로 정성 분석 및 정량 측정하고 Batch-to-Bach 편차를 최소화하는 고도의 품질관리로서 유럽약전(European Pharmacopoeia; EP), 미국약전(United States Pharmacopoeia; USP), WHO 및 기타 이에 준하느국제적인 품질기준에 부합하는 고순도의 식물 유래 표준물질을 제공하고있습니다.

 

따라서 모든 상품은 1차 표준물질로 생산되기 때문에 수분 함량, residual-solvents, 중금속, inorganic impurities은 물론 Counter-ions까지 분석된 결과를 토대로 Absolute contents(절대함량)을 쉽게 계산할 수 있습니다. 또한, 상품 출고시 바이알마다 정확한 무게값(exact weight)을 소수점 2째 자리까지 상품 라벨에 표기, 제공함으로써 물품 수령후 현장에서 무게를 재측정하는 번거로움이 없이 바로 사용할 수 있습니다.  

 

자세한 상품 정보 및 관련 문의는 전화 02-858-0328 또는 info@coresciences.co.kr로 문의주시기 바랍니다.

감사합니다!

 

Glucosinolates

As one of the leading manufacturers internationally, PhytoLab offers over 1,400 extensively documented herbal reference substances of all classes of natural compounds. Our portfolio currently includes a total of 25 glucosinolates and one glucosinolate-derived goitrogenic degradation product. Most of our glucosinolates and related compounds are certified as primary reference standards.

Occurrence and properties

Glucosinolates are secondary plant metabolites that occur in a wide variety of plants mainly from the families of the Brassicaceae (e.g. horseradish (Armoracia rusticana), radish (Raphanus sativus), wasabi (Eutrema japonicum), black mustard (Brassica nigra), white mustard (Sinapis alba), broccoli (Brassica oleracea var. italica), rapeseed (Brassica napus), maca (Lepidium meyenii), crambe (Crambe abyssinica), stonecrop (Alyssum argenteum), false flax (Camelina sativa), winter cress (Barbarea vulgaris), water cress (Nasturtium officinale), hoary alyssum (Berteroa incana), wallflower (Cheiranthus cheiri), rocket (Eruca sativa), dame’s violet (Hesperis matronalis), bitter candytuft (Iberis amara) and woad (Isatis tinctoria)), the Capparaceae (e.g. capers (Capparis spinosa)) and the Caricaceae (e.g. papaya (Carica papaya)), but also from the Euphorbiaceae, the Tropaeolaceae (e.g. garden nasturtium (Tropaeolum majus)), the Cleomaceae (e.g. spiny spider flower (Cleome spinosa)), the Limnanthaceae (e.g. Douglas’ meadowfoam (Limnanthes douglasii)) and the Moringaceae (e.g. drumstick tree (Moringa oleifera)).

Besides being responsible for the pungent and bitter taste of these plants, the glucosinolates and their hydrolysis products also protect plants against herbivores and have been shown to have antimicrobial, antiviral, antifungal and anticarcinogenic properties. Due to their antimicrobial properties, herbal medicinal products containing nasturtium herb and horseradish root are used in the treatment of sinusitis, bronchitis and urinary tract infections. The German Commission E published a monograph on horseradish (Armoraciae rusticanae radix) in 1988.

Structure of glucosinolates and derived compounds

General structure of glucosinolates
 

All glucosinolates are composed of a central carbon that is bound via a sulfur atom to a glucose, and via a nitrogen atom to a sulfate group. Furthermore, a substance-specific side chain (its structure depending on the amino acid involved in the initial phase of the glucosinolate biosynthesis) is bound to the central carbon atom. As the sulfate group is negatively charged, glucosinolates are most often isolated in the form of their potassium salts. Biosynthesis of glucosinolates that bear an alkyl or a sulfur-containing side chain (such as thiomethyl-, sulfinyl- or sulfonyl groups) starts most frequently from methionine (such as epiprogoitrin, glucoalyssin, glucoarabin, glucoberteroin, glucobrassicanapin, glucocamelinin, glucocapparin, glucocheirolin, glucoerucin, glucohesperin, glucoiberin, gluconapin, glucoraphanin, glucoraphasatin, glucoraphenin, 11-methylsulfinylundecylglucosinolate, progoitrin and sinigrin). The biosynthesis of glucosinolates with a phenyl or benzyl ring in the core structure starts from either phenylalanine or tyrosine (e.g. glucobarbarin, glucolimnanthin, glucomoringin, gluconasturtiin, glucotropaeolin and sinalbin), while indolyl-containing side chains as in glucobrassicin originate from the amino acid tryptophane.

Upon contact with the enzyme myrosinase and water (myrosinase is kept in a separate compartment in the cell, but can be released e.g. during cutting or chewing), the glucose moiety is cleaved. The remaining molecule can then undergo various spontaneous reactions, usually resulting in the corresponding isothiocyanate. Depending on the reaction conditions also thiocyanates, nitriles or oxazolidine 2-thiones such as the goitrin can be formed.

Structure of DL-Goitrin
 

Glucosinolates: side chain structure and derived isothiocyanates

Glucosinolate Side chain R Corresponding isothiocyanate
Epiprogoitrin CH2=CH–CHOH–CH2– 2(S)-Hydroxy 3-butenylisothiocyanate
Glucoalyssin CH3–SO–(CH2)5- 5-(Methylsulfinyl)pentylisothiocyanate
Glucoarabin CH3–SO–(CH2)9- 9-(Methylsulfinyl)nonylisothiocyanate
Glucobarbarin C6H5–CHOH–CH2– 2(S)-Hydroxy 2-phenylethylisothiocyanate
Glucoberteroin CH3–S–(CH2)5– 5-(Methylthio)pentylisothiocyanate
Glucobrassicanapin CH2=CH2–(CH2)3– 4-Pentenylisothiocyanate
Glucobrassicin 3-Indolylmethyl- 3-Indolylmethylisothiocyanate
Glucocamelinin CH3–SO–(CH2)10- 10-(Methylsulfinyl)decylisothiocyanate
Glucocapparin CH3– Methylisothiocyanate
Glucocheirolin CH3–SO2–(CH2)3– 3-(Methylsulfonyl)propylisothiocyanate
Glucoerucin CH3–S–(CH2)4– 4-(Methylthio)butylisothiocyanate
Glucohesperin CH3–SO–(CH2)6- 6-(Methylsulfinyl)hexylisothiocyanate
Glucoiberin CH3–SO–(CH2)3– 3-(Methylsulfinyl)propylisothiocyanate
Glucolimnanthin OCH3-C6H5–CH2– 3-Methoxybenzylisothiocyanate
Glucomoringin 4-O-Rhamnosy-C6H4–CH2– 4-(Rhamnosyloxy)benzylisothiocyanate
Gluconapin CH=CH–(CH2)2– 3-Butenylisothiocyanate
Gluconasturtiin C6H5–(CH2)2– 2-Phenylethylisothiocyanate
Glucoraphanin CH3–SO–(CH2)4– Sulforaphane
Glucoraphasatin CH3–S–CH=CH–(CH2)2– 4-(Methylthio)-3-butenylisothiocyanate
Glucoraphenin CH3–SO–CH=CH–(CH2)2– Sulforaphene
Glucotropaeolin C6H5–CH2– Benzylisothiocyanate
11-Methylsulfinylundecyl-glucosinolate CH3–SO–(CH2)11- 11-(Methylsulfinyl)undecylisothiocyanate
Progoitrin CH2=CH–CHOH–CH2– 2(R)-Hydroxy-3-butenylisothiocyanate
Sinalbin 4-OH-C6H4–CH2– 4-Hydroxybenzylisothiocyanate
Sinigrin CH2=CH–CH2– Allylisothiocyanate

Recommendation

For a reliable quantitative analysis of glucosinolates and their degradation products well characterized reference substances are essential. Currently we offer 25 glucosinolates and 1 goitrogen, all of them supplied together with a comprehensive certificate of analysis. Due to the negative charge of the glucosinolate core structure the counter ion has to be taken into account. For all glucosinolates characterized as primary reference standard, potassium was determined quantitatively and considered as an impurity in the calculation of the absolute content, which therefore refers to the pure glucosinolate only.

 

Related 26 products
 

Epiprogoitrin potassium salt

 

 

Glucoalyssin potassium salt

 

Glucoarabin potassium salt

 

Glucobarbarin potassium salt

 

Glucoberteroin potassium salt

 

Glucobrassicanapin potassium salt

 

Glucobrassicin potassium salt

 

Glucocamelinin potassium salt

 

Glucocapparin potassium salt

 

Glucocheirolin potassium salt

 

Glucoerucin potassium salt

 

Glucohesperin potassium salt

 

Glucoiberin potassium salt

 

Glucolimnanthin potassium salt

 

Glucomoringin potassium salt

Gluconapin potassium salt

 

Gluconasturtiin potassium salt

 

Glucoraphanin potassium salt

 

Glucoraphasatin potassium salt

 

Glucoraphenin potassium salt

 

Glucotropaeolin potassium salt

 

DL-Goitrin

11-Methylsulfinylundecylglucosinolate (K-salt)

 
 

Progoitrin potassium salt

 

Sinalbin potassium salt

 

Sinigrin potassium salt

 

관련 상품

아사이언스 coresciences PhytoLab GmbH & Co. KG 독일 한국 대리점 korea biochemical high quality phytochemicals reference standards analytical standard natural active ingredients products 표준품 기능성분 표준물질 지표성분 주성분 유효성분 순품 한방 한약 생약 천연물 신약 식물 유래 천연화합물 천연물